Core Mathematics 4 Paper L

1. Express

$$
\frac{5 x}{(x-4)(x+1)}+\frac{3}{(x-2)(x+1)}
$$

as a single fraction in its simplest form.
2. A curve has the equation

$$
\begin{equation*}
x^{2}+2 x y^{2}+y=4 \tag{5}
\end{equation*}
$$

Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
3. Evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{3}} \sin 2 x \cos x \mathrm{~d} x . \tag{5}
\end{equation*}
$$

4. A curve has parametric equations

$$
x=\cos 2 t, \quad y=\operatorname{cosec} t, \quad 0<t<\frac{\pi}{2} .
$$

The point P on the curve has x-coordinate $\frac{1}{2}$.
(i) Find the value of the parameter t at P.
(ii) Show that the tangent to the curve at P has the equation

$$
\begin{equation*}
y=2 x+1 \tag{5}
\end{equation*}
$$

5. (i) Express $\frac{2+20 x}{1+2 x-8 x^{2}}$ as a sum of partial fractions.
(ii) Hence find the series expansion of $\frac{2+20 x}{1+2 x-8 x^{2}},|x|<\frac{1}{4}$, in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
6. Use the substitution $x=2 \tan u$ to show that

$$
\begin{equation*}
\int_{0}^{2} \frac{x^{2}}{x^{2}+4} \mathrm{~d} x=\frac{1}{2}(4-\pi) \tag{8}
\end{equation*}
$$

7. A straight road passes through villages at the points A and B with position vectors $(9 \mathbf{i}-8 \mathbf{j}+2 \mathbf{k})$ and $(4 \mathbf{j}+\mathbf{k})$ respectively, relative to a fixed origin.

The road ends at a junction at the point C with another straight road which lies along the line with equation

$$
\mathbf{r}=(2 \mathbf{i}+16 \mathbf{j}-\mathbf{k})+t(-5 \mathbf{i}+3 \mathbf{j})
$$

where t is a scalar parameter.
(i) Find the position vector of C.

Given that 1 unit on each coordinate axis represents 200 metres,
(ii) find the distance, in kilometres, from the village at A to the junction at C.
8. (i) Find $\int \tan ^{2} x \mathrm{~d} x$.
(ii) Show that

$$
\int \tan x \mathrm{~d} x=\ln |\sec x|+c
$$ where c is an arbitrary constant.

The diagram shows part of the curve with equation $y=x^{\frac{1}{2}} \tan x$.
The shaded region bounded by the curve, the x-axis and the line $x=\frac{\pi}{3}$ is rotated through 360° about the x-axis.
(iii) Show that the volume of the solid formed is $\frac{1}{18} \pi^{2}(6 \sqrt{3}-\pi)-\pi \ln 2$.
9. An entomologist is studying the population of insects in a colony.

Initially there are 300 insects in the colony and in a model, the entomologist assumes that the population, P, at time t weeks satisfies the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k P
$$

where k is a constant.
(i) Find an expression for P in terms of k and t.

Given that after one week there are 360 insects in the colony,
(ii) find the value of k to 3 significant figures.

Given also that after two and three weeks there are 440 and 600 insects respectively,
(iii) comment on suitability of the modelling assumption.

An alternative model assumes that

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=P(0.4-0.25 \cos 0.5 t) .
$$

(iv) Using the initial data, $P=300$ when $t=0$, solve this differential equation.
(v) Compare the suitability of the two models.

